China high quality 25HP/30HP Suzuki Outboard 57311-96301 Pinion, 57510-96302 CZPT Gear, 57521-96302 Reverse Gear for Suzuki Marine Boat Motor Dt30 Dt25 worm gearbox

Product Description

We are looking CZPT to work together with you and we hope to build extensive cooperative relationship with you, please do not hesitate to contact us.
 

Durability Against Shallow Water

The sleeve, under panel and upper panel of the water pump is hardened with hard chrome plating to increase durability against sand and mud.

Programmed Tilt (for Shallow Water Drive)

The outboards feature a programmed tilt system that offers easy, three-stage adjustment of the outboard angle for shallow water operation. The system is equipped with a reverse lock that automatically engages when the engine is returned to its normal operating position to prevent the engine from kicking up.

Carrying Handle

A new retractable carrying handle folds down and out of the way, when not needed. In addition to making the outboard easier to carry, it gives the engine a more compact form when mounted on the transom.

Keystone Piston Rings

Special keystone piston rings use a unique design that delivers more power to the crankshaft with reduced energy loss. The rings also increase combustion efficiency, offer greater durability, reduce fuel consumption, and lessen the chance of sticking rings.

Through Prop Hub Exhaust

In addition to quiet operation, a through prop hub exhaust system provides greater exhaust efficiency resulting in increased combustion and acceleration. Other advantages include reduced power loss and superior high-speed operation.

Loop Charge Intake System

Dome-shaped pistons and cylinder heads help move more air and fuel into and exhaust out of the cylinder increasing both combustion and power for every stroke. With this, Suzuki’s two-strokes deliver better fuel economy, more power per cm3 and greater overall performance.

Capacitive Discharge Ignition (CDI)

The CDI Unit System is used together with the ignition coil and functions as an over-rev protection device. This unit also provides stable idling.

Suzuki’s Anti Corrosion Finish

All Suzuki outboards receive this specially formulated, anti-corrosion finish. Applying the finish directly to the aluminum alloy allows for maximum bonding between the finish and aluminum creating an outstanding treatment against corrosion.

 

Outboard model brand HONDA, SUZUKI, YAMAHA, MERCURY
Outboard part model 9.9HP,15HP,20HP,25HP,30HP,40HP,48HP,60HP,70HP,80HP,100HP

 

6E7/63V-45551-00 YAMAHA 15HP  PINION
6E7-45560-00 YAMAHA 15HP CZPT GEAR
6E7-45571-00 YAMAHA 15HP REVERSE GEAR
3B2-64571-0 TOHATSU  8HP    PINION 
3B2-64571-0 TOHATSU  8HP  CZPT GEAR
3B2-64030-0 TOHATSU  8HP  REVERSE GEAR
350-64571-0 TOHATSU  18HP    PINION 
350-64571-0 TOHATSU  18HP  CZPT GEAR
350-64030-0/362-64030-0 TOHATSU  18HP  REVERSE GEAR
57311-93901 SUZUKI 15HP    PINION 939
57510-93902 SUZUKI 15HP  CZPT GEAR939
57521-93902 SUZUKI 15HP  REVERSE GEAR939
57311-96301 SUZUKI 25HP PINION
57510-96302 SUZUKI 25HP CZPT GEAR
57521-96302 SUZUKI 25HP REVERSE GEAR
57311-94401 SUZUKI 40HP    PINION 
57510-94402 SUZUKI 40HP  CZPT GEAR
57521-94402 SUZUKI 40HP  REVERSE GEAR
61N-45551-00 YAMAHA  30HP PINION
61N-45560-00 YAMAHA  30HP CZPT GEAR
61N-45571-00 YAMAHA  30HP REVERSE GEAR
66T-45551-00 YAMAHA  40HP PINION
66T-45560-01 YAMAHA  40HP CZPT GEAR
66T-45571-00 YAMAHA  40HP REVERSE GEAR
6F5-45551-00 YAMAHA  40HP PINION
6F5-45560-00 YAMAHA  40HP CZPT GEAR
6F5-45571-00 YAMAHA  40HP REVERSE GEAR
679-45551-00 YAMAHA  40HP PINION
679-45560-01 YAMAHA  40HP CZPT GEAR
679-45570-00 YAMAHA  40HP REVERSE GEAR
697-45551-00 YAMAHA  48HP PINION
697-45560-00 YAMAHA  48HP CZPT GEAR
697-45571-00 YAMAHA  48HP REVERSE GEAR
688-45551-00 YAMAHA  75HP PINION
688-45560-00 YAMAHA  75HP CZPT GEAR
688-45571-00 YAMAHA  75HP REVERSE GEAR
6E5-45551-00 YAMAHA  115HP PINION
6E5-45560-00 YAMAHA  115HP CZPT GEAR
6E5-45571-00 YAMAHA  115HP REVERSE GEAR
6G5-45551-00 YAMAHA  200HP PINION
6G5-45560-00 YAMAHA  200HP CZPT GEAR
6G5-45571-00 YAMAHA  200HP REVERSE GEAR
346-64571-0 TOHATSU  25HP    PINION 
346-64571-0 TOHATSU  25HP  CZPT GEAR
346-64030-0 TOHATSU  25HP  REVERSE GEAR
57311-99J10 SUZUKI 15HP    PINION 
6E0-45551-00 YAMAHA  5HP    PINION 
6N0-G5551-00 YAMAHA  8HP    PINION 
57521-99J10 SUZUKI 15HP  CZPT GEAR
6N0-G5560-00 YAMAHA  8HP  CZPT GEAR
6E0-45560-00 YAMAHA  5HP  CZPT GEAR
626-45551-00 626    PINION 
626-45560-01 626  CZPT GEAR
650-45570-00 650  REVERSE GEAR
647-45570-01 YAMAHA  9HP  REVERSE GEAR
647-45560-00 YAMAHA  9HP  CZPT GEAR
647-45551-00 YAMAHA  9HP    PINION 
  SUZUKI 175HP    PINION 
  SUZUKI 175HP  CZPT GEAR
  SUZUKI 175HP  REVERSE GEAR
6J8-45560-00 YAMAHA  30HP  CZPT GEAR
6H4-45560-00 6H4  CZPT GEAR
6H4-45551-00 6H4    PINION 
68V-45551-00 90-115HP    PINION 
68V-45571-00 90-115HP  REVERSE GEAR
68V-45560-00 90-115HP  CZPT GEAR
67F-45571-00 67F  REVERSE GEAR
6D9-45560-10 75-90HP  CZPT GEAR
6D9-45551-10 75-90HP    PINION 
6J8-45551-00 YAMAHA  30HP    PINION 

 
We are professional outboard engine parts supplier,we can supply variousparts:gears,shafts,gaskets,carburetors,propellor,bearing,and so on. 

 

YAMAHA, SUZUKI, TOHATSU/NISSAN, HONDA, etc outboard brands. 

Our marine outboard parts contains crankshaft, crank pin, cylinder liner, diaphragm, fuel filter, mount damper, shaft, spacer, spark plugs, starter, gear, pinion, gasket, gasket kit, impeller, key woodruff, propeller, piston, primary pump, clutch dog ,carburetor repair kit, bracket, upper casing, lower casing, repair kit, washer, bolt ,pin, spring, float, tube, clamp, bearing, seal, o-ring, cartridge, tab-trim , bushing, cable, connector, coil ignition, CDI unit, water pump, collar, condenser, etc. 
 

After-sales Service: 1 Year
Warranty: 1 Year
Application: Boat
Standard: ISO
Customized: Non-Customized
Surface Treatment: Polished
Samples:
US$ 18/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

Gear

Synthesis of Epicyclic Gear Trains for Automotive Automatic Transmissions

In this article, we will discuss the synthesis of epicyclic gear trains for automotive automatic transmissions, their applications, and cost. After you have finished reading, you may want to do some research on the technology yourself. Here are some links to further reading on this topic. They also include an application in hybrid vehicle transmissions. Let’s look at the basic concepts of epicyclic gear trains. They are highly efficient and are a promising alternative to conventional gearing systems.

Synthesis of epicyclic gear trains for automotive automatic transmissions

The main purpose of automotive automatic transmissions is to maintain engine-drive wheel balance. The kinematic structure of epicyclic gear trains (EGTs) is derived from graph representations of these gear trains. The synthesis process is based on an algorithm that generates admissible epicyclic gear trains with up to ten links. This algorithm enables designers to design auto gear trains that have higher performance and better engine-drive wheel balance.
In this paper, we present a MATLAB optimization technique for determining the gear ratios of epicyclic transmission mechanisms. We also enumerate the number of teeth for all gears. Then, we estimate the overall velocity ratios of the obtained EGTs. Then, we analyze the feasibility of the proposed epicyclic gear trains for automotive automatic transmissions by comparing their structural characteristics.
A six-link epicyclic gear train is depicted in the following functional diagram. Each link is represented by a double-bicolor graph. The numbers on the graph represent the corresponding links. Each link has multiple joints. This makes it possible for a user to generate different configurations for each EGT. The numbers on the different graphs have different meanings, and the same applies to the double-bicolor figure.
In the next chapter of this article, we discuss the synthesis of epicyclic gear trains for automotive automatic transaxles. SAE International is an international organization of engineers and technical experts with core competencies in aerospace and automotive. Its charitable arm, the SAE Foundation, supports many programs and initiatives. These include the Collegiate Design Series and A World In Motion(r) and the SAE Foundation’s A World in Motion(r) award.
Gear

Applications

The epicyclic gear system is a type of planetary gear train. It can achieve a great speed reduction in a small space. In cars, epicyclic gear trains are often used for the automatic transmission. These gear trains are also useful in hoists and pulley blocks. They have many applications in both mechanical and electrical engineering. They can be used for high-speed transmission and require less space than other types of gear trains.
The advantages of an epicyclic gear train include its compact structure, low weight, and high power density. However, they are not without disadvantages. Gear losses in epicyclic gear trains are a result of friction between gear tooth surfaces, churning of lubricating oil, and the friction between shaft support bearings and sprockets. This loss of power is called latent power, and previous research has demonstrated that this loss is tremendous.
The epicyclic gear train is commonly used for high-speed transmissions, but it also has a small footprint and is suitable for a variety of applications. It is used as differential gears in speed frames, to drive bobbins, and for the Roper positive let-off in looms. In addition, it is easy to fabricate, making it an excellent choice for a variety of industrial settings.
Another example of an epicyclic gear train is the planetary gear train. It consists of two gears with a ring in the middle and the sun gear in the outer ring. Each gear is mounted so that its center rotates around the ring of the other gear. The planet gear and sun gear are designed so that their pitch circles do not slip and are in sync. The planet gear has a point on the pitch circle that traces the epicycloid curve.
This gear system also offers a lower MTTR than other types of planetary gears. The main disadvantage of these gear sets is the large number of bearings they need to run. Moreover, planetary gears are more maintenance-intensive than parallel shaft gears. This makes them more difficult to monitor and repair. The MTTR is also lower compared to parallel shaft gears. They can also be a little off on their axis, causing them to misalign or lose their efficiency.
Another example of an epicyclic gear train is the differential gear box of an automobile. These gears are used in wrist watches, lathe machines, and automotives to transmit power. In addition, they are used in many other applications, including in aircrafts. They are quiet and durable, making them an excellent choice for many applications. They are used in transmission, textile machines, and even aerospace. A pitch point is the path between two teeth in a gear set. The axial pitch of one gear can be increased by increasing its base circle.
An epicyclic gear is also known as an involute gear. The number of teeth in each gear determines its rate of rotation. A 24-tooth sun gear produces an N-tooth planet gear with a ratio of 3/2. A 24-tooth sun gear equals a -3/2 planet gear ratio. Consequently, the epicyclic gear system provides high torque for driving wheels. However, this gear train is not widely used in vehicles.
Gear

Cost

The cost of epicyclic gearing is lower when they are tooled rather than manufactured on a normal N/C milling machine. The epicyclic carriers should be manufactured in a casting and tooled using a single-purpose machine that has multiple cutters to cut the material simultaneously. This approach is widely used for industrial applications and is particularly useful in the automotive sector. The benefits of a well-made epicyclic gear transmission are numerous.
An example of this is the planetary arrangement where the planets orbit the sun while rotating on its shaft. The resulting speed of each gear depends on the number of teeth and the speed of the carrier. Epicyclic gears can be tricky to calculate relative speeds, as they must figure out the relative speed of the sun and the planet. The fixed sun is not at zero RPM at mesh, so the relative speed must be calculated.
In order to determine the mesh power transmission, epicyclic gears must be designed to be able to “float.” If the tangential load is too low, there will be less load sharing. An epicyclic gear must be able to allow “float.” It should also allow for some tangential load and pitch-line velocities. The higher these factors, the more efficient the gear set will be.
An epicyclic gear train consists of two or more spur gears placed circumferentially. These gears are arranged so that the planet gear rolls inside the pitch circle of the fixed outer gear ring. This curve is called a hypocycloid. An epicyclic gear train with a planet engaging a sun gear is called a planetary gear train. The sun gear is fixed, while the planet gear is driven.
An epicyclic gear train contains several meshes. Each gear has a different number of meshes, which translates into RPM. The epicyclic gear can increase the load application frequency by translating input torque into the meshes. The epicyclic gear train consists of 3 gears, the sun, planet, and ring. The sun gear is the center gear, while the planets orbit the sun. The ring gear has several teeth, which increases the gear speed.
Another type of epicyclic gear is the planetary gearbox. This gear box has multiple toothed wheels rotating around a central shaft. Its low-profile design makes it a popular choice for space-constrained applications. This gearbox type is used in automatic transmissions. In addition, it is used for many industrial uses involving electric gear motors. The type of gearbox you use will depend on the speed and torque of the input and output shafts.

China high quality 25HP/30HP Suzuki Outboard 57311-96301 Pinion, 57510-96302 CZPT Gear, 57521-96302 Reverse Gear for Suzuki Marine Boat Motor Dt30 Dt25 worm gearboxChina high quality 25HP/30HP Suzuki Outboard 57311-96301 Pinion, 57510-96302 CZPT Gear, 57521-96302 Reverse Gear for Suzuki Marine Boat Motor Dt30 Dt25 worm gearbox
editor by CX 2023-06-13