China OEM Sintered Metal Bevel Gear 90 Degree Miter Spiral Supplyer Forged Plastic Sintered Metal Stainless Steel for Test Machine High Quanlity Sintered Metal Bevel Gear helical bevel gear

Product Description

Sintered Metal Bevel Gear 90 Degree Miter Spiral Supplyer Forged Plastic Sintered Metal Stainless Steel for Test Machine High Quanlity Sintered Metal Bevel Gear

Application of Sintered Metal Bevel Gear

Sintered metal bevel gears are used in a wide variety of applications where high strength, durability, and efficiency are required. Some common applications include:

  • Machine tools: Sintered metal bevel gears are used in machine tools to transmit power between the spindle and the workpiece.
  • Wind turbines: Sintered metal bevel gears are used in wind turbines to transmit power from the rotor to the generator.
  • Robotics: Sintered metal bevel gears are used in robotics to transmit power from the motor to the actuator.
  • Automotive: Sintered metal bevel gears are used in automotive applications such as differentials and transfer cases.
  • Aerospace: Sintered metal bevel gears are used in aerospace applications such as jet engines and helicopters.

Sintered metal bevel gears offer a number of advantages over other types of gears, including:

  • High strength: Sintered metal bevel gears are very strong and can withstand high loads.
  • Durability: Sintered metal bevel gears are very durable and can withstand a high number of cycles.
  • Efficiency: Sintered metal bevel gears are very efficient and can transmit power with minimal losses.
  • Low cost: Sintered metal bevel gears are relatively low in cost, making them a cost-effective option for many applications.

Sintered metal bevel gears are a versatile and reliable type of gear. They are available in a wide range of sizes and materials to meet the needs of different applications.

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car
Hardness: Hardened Tooth Surface
Gear Position: Internal Gear
Manufacturing Method: Cast Gear
Toothed Portion Shape: Worm Gear
Material: Stainless Steel
US$ 9999/Piece
1 Piece(Min.Order)

Request Sample

miter gear

How do miter gears handle changes in direction and torque transmission?

Miter gears are specifically designed to handle changes in direction and torque transmission efficiently. Here’s an explanation of how they accomplish this:

1. Right Angle Transmission:

Miter gears are primarily used to transmit rotational motion at a 90-degree angle. When two miter gears with intersecting shafts are meshed together, they allow the input and output shafts to be positioned perpendicular to each other. This right angle transmission capability enables changes in direction within a compact space.

2. Interlocking Tooth Design:

Miter gears have teeth that are cut at a specific angle to match the gear’s cone shape. When two miter gears mesh, their teeth interlock and transfer torque between the gears. The interlocking tooth design ensures a smooth and efficient torque transmission, minimizing power loss and maximizing mechanical efficiency.

3. Bevel Gear Configuration:

Miter gears belong to the bevel gear family, which includes straight bevel gears and spiral bevel gears. Straight bevel gears have straight-cut teeth and are suitable for applications with moderate torque and speed requirements. Spiral bevel gears have curved teeth that gradually engage, providing higher torque capacity and smoother operation. The choice between straight and spiral bevel gears depends on the specific application’s torque and performance requirements.

4. Meshing Alignment:

Proper alignment of miter gears is crucial for efficient torque transmission and smooth operation. The gears must be precisely positioned and aligned to ensure accurate meshing of the teeth. This alignment is typically achieved using precision machining and assembly techniques to maintain the desired gear contact pattern and tooth engagement.

5. Load Distribution:

When torque is transmitted through miter gears, the load is distributed across multiple teeth rather than concentrated on a single tooth. This load distribution helps to minimize tooth wear, reduce stress concentrations, and increase the overall load-carrying capacity of the gears.

6. Lubrication:

Proper lubrication is essential for the smooth operation and longevity of miter gears. Lubricants reduce friction and wear between the gear teeth, ensuring efficient torque transmission and minimizing heat generation. The type and method of lubrication depend on the specific application and operating conditions.

7. Backlash Control:

Backlash refers to the slight clearance between the mating teeth of gears. Miter gears can be designed with specific tooth profiles and manufacturing techniques to control backlash and minimize any unwanted movement or play. This helps maintain accuracy and precision in direction and torque transmission.

In summary, miter gears handle changes in direction and torque transmission through their right angle transmission capability, interlocking tooth design, bevel gear configuration, precise meshing alignment, load distribution across teeth, proper lubrication, and backlash control. These features make miter gears an effective choice for applications that require efficient and reliable direction and torque transmission.

miter gear

What is the role of the pitch angle in miter gear design?

In miter gear design, the pitch angle plays a significant role in determining the characteristics and performance of the gears. Here’s an explanation of its role:

1. Definition of Pitch Angle:

The pitch angle in miter gear design refers to the angle between the gear’s tooth face and a plane perpendicular to the gear’s axis. It is typically denoted by the Greek letter “β” (beta). The pitch angle determines the shape and orientation of the gear teeth.

2. Tooth Profile:

The pitch angle influences the tooth profile of miter gears. By altering the pitch angle, the shape, size, and thickness of the gear teeth can be adjusted. Different pitch angles result in variations in the tooth geometry, such as tooth thickness, tooth height, and the angle of the tooth face.

3. Contact Ratio:

The pitch angle affects the contact ratio between the gear teeth. The contact ratio refers to the number of teeth in contact at any given moment during the rotation of the gears. An appropriate pitch angle helps optimize the contact ratio, ensuring sufficient tooth engagement and load distribution across the gear surfaces. This contributes to smoother operation, reduced noise, and improved gear life.

4. Strength and Load Distribution:

The pitch angle influences the strength and load distribution capabilities of miter gears. A proper pitch angle ensures optimal load transmission across the gear teeth, preventing concentrated stresses and reducing the risk of tooth failure or breakage. By selecting the appropriate pitch angle, designers can achieve the desired strength and load-carrying capacity for the specific application.

5. Gear Efficiency:

The pitch angle also affects the efficiency of miter gears. By considering factors such as tooth contact, sliding friction, and tooth deflection, the pitch angle can be optimized to minimize energy losses during gear meshing. Efficient gear design with an appropriate pitch angle contributes to higher overall system efficiency and reduced power consumption.

6. Noise and Vibration:

The pitch angle plays a role in determining the noise and vibration characteristics of miter gears. Improper pitch angles can result in undesirable effects, such as excessive noise, vibration, and tooth impact. By carefully selecting the pitch angle, gear designers can minimize these effects, leading to quieter operation and improved gear performance.

7. Meshing Compatibility:

When using miter gears in pairs, the pitch angles of both gears should be compatible to ensure proper meshing and smooth operation. The pitch angles need to be designed and manufactured with precision to ensure accurate alignment and optimal tooth engagement.

In summary, the pitch angle in miter gear design influences the tooth profile, contact ratio, strength and load distribution, gear efficiency, noise and vibration characteristics, and meshing compatibility. By selecting an appropriate pitch angle, gear designers can achieve the desired performance, durability, and efficiency for specific applications.

miter gear

Can you explain the unique design of miter gear teeth?

The design of miter gear teeth is distinct and plays a crucial role in the functionality of these gears. Here’s a detailed explanation:

1. Tooth Shape:

Miter gear teeth have a straight shape, similar to spur gears. However, unlike spur gears where the teeth are parallel to the gear axis, miter gear teeth are cut at a right angle to the gear’s face. This allows the teeth to engage correctly when two miter gears mesh together at a 90-degree angle.

2. Equal Number of Teeth:

Miter gears have an equal number of teeth on both gears in a pair. This ensures proper meshing and smooth transmission of rotational motion between the gears. The equal number of teeth is essential for maintaining a constant speed ratio and preventing any slippage or irregular motion.

3. Conical Shape:

Another unique aspect of miter gear teeth is the conical shape of the gears themselves. The teeth are cut on the conical surface, which allows for proper engagement and transmission of motion between intersecting shafts. The conical shape ensures that the teeth mesh correctly, providing efficient power transmission at the desired angle.

4. Meshing at 90-Degree Angle:

Miter gears are designed to mesh at a 90-degree angle, allowing for power transmission between intersecting shafts. The teeth are specifically cut to facilitate this arrangement, ensuring that the gears engage smoothly and transmit rotational motion without any loss or disruption.

5. Tooth Contact and Load Distribution:

When miter gears mesh, the contact between the teeth occurs along a single line, known as the line of contact. This concentrated contact area enables effective load distribution and ensures that the gear teeth bear the transmitted torque evenly. Proper tooth contact is vital for minimizing wear and maintaining the longevity of the gears.

6. Lubrication and Noise Reduction:

The unique design of miter gear teeth can influence lubrication and noise levels. Adequate lubrication is essential to reduce friction and wear between the teeth during operation. Additionally, the straight tooth profile of miter gears tends to produce more noise compared to gears with helical or curved teeth. Proper lubrication and noise reduction measures are often employed to optimize the performance of miter gears.

In summary, the unique design of miter gear teeth includes their straight shape, equal number of teeth, conical shape of the gears, meshing at a 90-degree angle, tooth contact along a line, and considerations for lubrication and noise reduction. These design features ensure efficient power transmission, proper load distribution, and reliable operation in mechanical systems that utilize miter gears.

China OEM Sintered Metal Bevel Gear 90 Degree Miter Spiral Supplyer Forged Plastic Sintered Metal Stainless Steel for Test Machine High Quanlity Sintered Metal Bevel Gear helical bevel gearChina OEM Sintered Metal Bevel Gear 90 Degree Miter Spiral Supplyer Forged Plastic Sintered Metal Stainless Steel for Test Machine High Quanlity Sintered Metal Bevel Gear helical bevel gear
editor by CX 2023-09-23